InterWrite

Houghton Mifflin Company
Math Interactive Lessons
Tutorial 34: Transformations of Graphs and Functions
02/13/04

Author: Shawn Hackshaw

Tutorial: Transformations of Graphs of Functions
Outline

p01	Prepare for the Tutorial (includes PrepTests)
m01x01	Explore the Concept Concept: Horizontal Translations (or Shifts)
	Study the Concept
m01c01	Try an Example
m01e01	Practice Exercises
m01p01	Concept: Vertical Translations (or Shifts)
m02	Study the concept
m02c01	Try an Example
m02e01	Practice Exercises
m02p01	Concept: Reflections
m03	
	Study the Concept
m03c01	Try an Example
m03e01	Practice Exercises
m03p01	Video clip
m03v01	Mastery Tests
mas01	

Tutorial: Transformations of Graphs of Functions

Prepare for the Tutorial

Objectives

In this tutorial, you will learn the following concepts:

- Vertical Translations of Graphs
- Horizontal Translations of Graphs
- Reflections of Graphs

Prep Tests

You should be comfortable with the following concepts before you take this Tutorial. Click to take a Prep Test.

Computer graphics artists have specialized software to help them create threedimensional drawings. In this image, the artist used the software to reflect and shift images to create patterns.

View Image Credit

[© Getty Images, Inc.]
E013499 Royalty Free Getty Images, Inc.

- Graphing Functions
- Graphing a Line Given Its Point and Slope

Tutorial: Transformations of Graphs of Functions

Prepare for the Tutorial: Prep Tests

Graphing Functions

```
il0032c01pre01.xml
Beginning Algebra with Applications, 6/E [HMBA]
Aufmann; 0618306129
1. 5.5.2.56 Graphs of Linear Functions (MC)
2. 5.5.2.59 Graphs of Linear Functions (MC)
Graphing a Line Given a Point and the Slope il0026c01pre01.xml
Elementary Algebra: Discovery and Visualization, 3/E [HMHE]
Hubbard/Robinson; 0618223932
1. 4.4.2.142 Sketching a Graph Given It's Slope and a Point (MC)
2. 4.4.2.143 Sketching a Graph Given It's Slope and a Point (MC)
```


Explore the Concept

ID= il0034m01x01.swf

TRANSLATIONS OF GRAPHS

The standard form of the equation for a parabola is $y=(x-h)^{2}+k$. The vertex is at (h, k).
Using your mouse, click on the arrow buttons to move the graph around on the coordinate grid. You can also click on the vertex of the parabola and drag it around the coordinate plane.

Notice how the equation of the parabola changes depending on the placement of the vertex.

$$
y=(x-h)^{2}+k
$$

[These arrows appear to the right of the coordinate grid]

Programming

1. Screen open with the graph of $y=x^{2}$.
2. Also on screen are radio buttons with arrows for up, down, left and right.
3. In the upper right-hand corner of the screen is the function $y=x^{2}$
4. The user interacts with the graph by means of the arrow buttons.
5. If the user presses the up button, the function description changes to $y=x^{2}+$ the number of clicks of the button. (e.g. user presses the up arrow 3 times, the function description changes to $y=x^{2}+3$) Also, with each click of a button, the graph will move in that direction so that the user can see what happens to the graph as well as how it changes the equation for the graph.
6. If user presses the down button, the same as \#5 above, except the value of the number of clicks is subtracted from the function description.
(e.g. the graph is already at $y=x^{2}+3$, the user clicks the down arrow 5 times...as the graph moves down, the function description
changes from $y=x^{2}+3$, to $y=x^{2}+2$, to $y=x^{2}+1$, to $y=x^{2}$, to $y=x^{2}-1$, to $y=x^{2}-2$)
7. If user presses the right arrow button, the function description changes to
$y=(x \text { - number of right arrow clicks })^{2} \pm$ number of up/down arrow clicks (e.g. if the graph begins at $y=x^{2}$, and the user presses the right arrow button 2 times, the graph moves to the right 2 units and the function descriptor changes to $y=(x-2)^{2}$. If at this point the user clicks up 3 times, the descriptor changes to reflect that and the graph moves. The descriptor would now read $y=(x-2)^{2}+3$.
8. If user presses the left arrow button, the function description changes to
$y=(x+\text { number of left arrow clicks) })^{2} \pm$ number of up/down arrow clicks (e.g. if the graph begins at $y=x^{2}$, and the user presses the left arrow button 2 times, the graph moves to the left 2 units and the function descriptor changes to $y=(x+2)^{2}$. If at this point the user clicks down 3 times, the descriptor changes to reflect that and the graph moves. The descriptor would now read $y=(x+2)^{2}-3$.
[^0]
Concept: Horizontal Translations (or Shifts)

Study the Concept (Storyboard)

(Animation Note: Each of these graphs are faded in sequentially accumulating the final combined image.)

Horizontal Translations (or Shifts) of a Graph
If f is a function and c is a positive constant, then
$y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left c units.
$y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right c units.
The graph in blue represents $f(x)=x^{2}$.

Take Note

Take Note

One way to determine the direction of the horizontal shift is to ask, "For what value of x is $f(x)=0$." When
$f(x)=(x-3)^{2}$, the value of x that would make the function equal to 0 is $x=3$. Therefore, the graph of

The graph in green represents $f(x-3)=(x-3)^{2}$.

The graph in red represents $f(x+3)=(x+3)^{2}$.
$f(x-3)=(x-3)^{2}$ is the graph of
$f(x)=x^{2}$ shifted to the right three units.

Pedagogical Tags: For the concept, example and practice for
Horizontal Translations (or Shifts) of Graphs
Graphing Calculator: Yes
Applications: None
ISBNs 0-618-39184-3, 0-618-15686-0, 0-618-10337-6, 0-618-
$38836-2,0-618-38826-5,0-618-38845-1$

Concept: Horizontal Translations (or Shifts)
 m01c01

Study the Concept (Programming and Text Script)

File Names This Module (Study the

 Concept)ID: m03c01
Audio: il0034m01c01.mp3 Animation Frame 1: il0034m01c01animF1_IW.ai Animation Frame 2: il0034m01c01animF2_IW. ai Animation Frame 2: il0034m01c01animF3_IW. ai

Images, Text, Programming
Each numbered element is faded in unless otherwise noted

1) (Title) Horizontal Translations (or Shifts) of a Graph
1a)(Definition Box)

If f is a function and c is a positive constant, then

1b)(Definition Box)

$y=f(x+c)$ is the graph of $y=f(x)$
shifted to the left c units.
1c)(Definition Box)
$y=f(x-c)$ is the graph of $y=f(x)$
shifted to the right c units.
2) (Animation) (This part appears at the opening of the lesson)

Narration (Text Transcript)

(No additional Text)
If f is a function and c is a positive constant,

then

$y=f(x+c)$ is the graph of $y=f(x)$ shifted to the left c units.
$y=f(x-c)$ is the graph of $y=f(x)$ shifted to the right c units.
(No Text)

Narration (Audio Transcript)	Project Note

(No Audio)

If f is a function and c is a positive constant,
then y equals f of the sum x plus c is the graph of y equals f of x shifted to the left c units.
y equals f of the difference of x and c is the graph of y equals f of x shifted to the right c units.
(No Audio)

Project Note

3) (Main Screen Text)

The graph in blue represents $f(x)=x^{2}$.
4) (Animation) (The purple graph appears as (No additional Text)

narration proceeds.)

The graph in blue represents $f(x)=x^{2}$.

5) (Main Screen Text)

The graph in green represents $f(x-3)=(x-3)^{2}$.
6) (Animation) (The green graph appears as narration proceeds.)

7) (Main Screen Text)

The graph in red represents

$$
f(x+3)=(x+3)^{2}
$$

8) (Take Note appears when the button is clicked)

Take Note

One way to determine the direction of the horizontal shift is to ask, "For what value of x is $f(x)=0$." When $f(x)=(x-3)^{2}$, the value

The graph in green represents $f(x-3)=(x-3)^{2}$.
(No additional Text)

The graph in red represents $f(x+3)=(x+3)^{2}$.

Take Note button

The graph in green represents the function, f of the difference of_ x and three equals x minus three, quantity squared.

Notice that the vertex has moved three units to the right.
(No Audio)

The graph in red represents the function, f of the sum x plus three, equals x plus three, quantity squared.

Notice that the vertex has moved two units to the left.
(No Audio for take note)
of x that would make the function equal to 0 is
$x=3$. Therefore, the graph of $f(x-3)=(x-3)^{2}$
is the graph of $f(x)=x^{2}$ shifted to the right
three units.

Try an Example (Storyboard)

Given the graph of $y=x^{3}$, describe the graph that represents $y=(x-5)^{3}$.
a. the graph shifts left five units
b. the graph shifts right five units

Check Answer (button)

Answer Feedback
The correct answer is b. The graph shifts to the right five units.

Incorrect Feedback
 [if user chooses a]

Remember, a positive quantity added to the variable shifts the graph left and a positive quantity subtracted from the variable shifts the graph to the right. Please try again.
$2^{\text {nd }}$ wrong answer:
The correct answer is b . The graph shifts to the right five units.

Try an Example (Programming and Text Script)

File Names This Module (Try an Example)

ID: m03e01
Animation: il0034m01e01anim.swf
Audio: il0034m01e01.mp3
Animation Frame 1: il0034m01e01animF1_IW.a

Images, Text, Programming
Each numbered row is faded in unless

otherwise noted

1) (Graphic) (If you are using a graphing utility, the equation for this graph is $y=x^{3}$)

Narration (Text Transcript)

Given the graph of $y=x^{3}$, describe
the graph that represents $y=(x-5)^{3}$.

Given the graph of $y=x^{3}$, describe
the graph that represents $y=(x-5)^{3}$.

Project
2) (Main Screen Text)
a. the graph shifts left five units
b. the graph shifts right five
units

Answer Feedback
The correct answer is b. The graph shifts to the right five units.
4)(Incorrect Feedback \#1) [if user chooses a]

Remember, a positive quantity added to the variable shifts the graph left and a positive quantity subtracted from the variable shifts the graph to the right. Please try again.
5)(Incorrect Feedback \#2)

The correct answer is b. The graph shifts to the right five units.
a. the graph shifts left five units
b. the graph shifts right five units

Check Answer (button)

Answer Feedback

The correct answer is b. The graph shifts to the right five units.
[if user chooses a]
Remember, a positive quantity added to the variable shifts the graph left and a positive quantity subtracted from the variable shifts the graph to the right. Please try again.

Sorry. You are incorrect.
The correct answer is b. The graph
shifts to the right five units.

Choose from the following choices:

The correct answer is b. The graph shifts to the right five units.

[if user chooses a]

Remember, a positive quantity added to the variable shifts the graph left and a positive quantity subtracted from the variable shifts the graph to the right. Please try again.

The correct answer is b. The graph shifts to the right five units.

Concept: Horizontal Translations (or Shifts)

Practice Exercises

ID = m01p01
aufmann_ia/chap9/sect2/prob5
aufmann_ia/chay9/sect2/prob8

Concept: Vertical Translations (or Shifts)

Study the Concept (Storyboard)

(Animation Note: These graphs lines fade in one at a time, but the final image has all 3 graphs.)

Vertical Translations (or Shifts) of a Graph

If f is a function and c is a positive constant, then
$y=f(x)+c$ is the graph of $y=f(x)$ shifted up c units.
$y=f(x)-c$ is the graph of $y=f(x)$ shifted down c units.
The graph in blue represents $f(x)=|x|$.

The graph in red represents $f(x)+2=|x|+2$.

Pedagogical Tags: For the concept, example, explore the concept, and practice for Vertical Translations (or Shifts) of Graphs
Graphing Calculator: Yes
Applications: None
ISBNs 0-618-39184-3, 0-618-15686-0, 0-618-10337-6, 0-618-38836-2, 0-618-38826-5, 0-618-38845-1

Concept: Vertical Translations (or Shifts)

Study the Concept (Programming and Text Script)	
File Names This Module (Study the	Animation: il0034m02c01anim.swf
Concept)	
ID: m02c01	
Audio: il0034m02c01.mp3	Animation Frame 1: il0034m02c01animF1_IW.a
	Animation Frame 1: il0034m02c01animF2_IW.a
	Animation Frame 1: il0034m02c01animF3_IW.
Images, Text, Programming	Narration (Text Transcript)
Each numbered element is faded in unless otherwise noted	
1) (Title) Vertical Translations (or Shifts) of a	(No additional Text)
Graph	
1a)(Definition Box)	If f is a function and c is a positive
If f is a function and c is a positive	constant,
constant, then	
1b)(Definition Box)	then
$y=f(x)+c$ is the graph of $y=f(x)$ shifted up c units.	$y=f(x)+c$ is the graph of $y=f(x)$ shifted up c units.
1c)(Definition Box)	$y=f(x)-c$ is the graph of $y=f(x)$ shifted down c units.
$y=f(x)-c$ is the graph of $y=f(x)$ shifted down c units.	
2) (Animation) (This part appears at the opening of the lesson)	(No Text)

opening of the lesson)

Animation: il0034m02c01anim.swf

Animation Frame 1: il0034m02c01animF1_IW.ai Animation Frame 1: il0034m02c01animF2_IW.ai Animation Frame 1: il0034m02c01animF3_IW.ai

Narration (Text Transcript)

(No additional Text)
If f is a function and c is a positive constant,
then
$y=f(x)+c$ is the graph of $y=f(x)$ shifted up c units.
$y=f(x)-c$ is the graph of $y=f(x)$ shifted down c units
(No Text)
Narration (Audio Transcript)
(No Audio)
If f is a function and c is a positive
constant,
then y equals f of x plus some quantity
c is the graph of y equals f of x shifted
up c units.
y equals f of x minus some quantity c
is the graph of y equals f of x shifted
down c units.
(No Audio)

Project Note
\qquad

3) (Main Screen Text)

The graph in blue represents $f(x)=|x|$.
4) (Animation) (The purple graph appears as narration proceeds.)

5) (Main Screen Text)

The graph in red represents

The graph in blue represents $f(x)=|x|$.
(No additional Text)

The graph in red represents $f(x)+2=|x|+2$.

$f(x)+2=|x|+2$.
6) (Animation) (The green graph appears as narration proceeds.)

7) (Main Screen Text)

The graph in green represents $f(x)-3=|x|-3$.
(No additional Text)

The graph in green represents $f(x)-3=|x|-3$.
absolute value of x, plus two.
(No Audio)

The graph in green represents the function, f of x, minus three, equals the absolute value of x, minus three.

Try an Example 1 (Storyboard)

Given the graph of $f(x)=x^{2}$, select the graph that represents $g(x)=x^{2}-4$.

Click the graph below that represents the correct answer.

INTERWRITE | 603-425-0399 | TPG@INTERWRITE.COM Page 25 of 55

```
Answer Feedback
Since the original graph has its vertex at the origin,
subtracting 4 from every point on the graph brings the
vertex to (0, -4).
Answer Feedback for Incorrect Answers.
[If user chooses A, C or D]
Remember, a positive quantity added to the function
shifts the graph up and a positive quantity subtracted
from the function shifts the graph down. Please try
again.
[incorrect feedback #2]
The correct answer is B. Since the original graph has its
vertex at the origin, subtracting 4 from every point on
the graph brings the vertex to (0,-4).
```


Concept: Vertical Translations (or Shifts)
 m02e01

Try an Example 1 (Programming and Text Script)
File Names This Module (Try an Example) Animation: il0034m02e01anim.swf

ID. m02e01
Audio: il0034m02e01.mp3

Animation Frame 1: il0034m02e01animF1_IW.ai
Static frame 1 : il0034m02e01static01.swf Static frame 2: il0034m02e01static02.swf Static frame 3: il0034m02e01static03.swf Static frame 4: il0034m02e01static04.swf

Narration (Text Transcript)

Given the graph of $f(x)=x^{2}$, select the graph that represents $g(x)=x^{2}-4$.

Narration (Audio Transcript)	Project Note
Given the graph of f of x equals x	
squared, select the graph that	
represents g of x equals x squared	
minus four.	

Each numbered element is faded in unless

otherwise noted

1)(Graphic) (If you are using a graphing utility, the equation for this graph is $y=x^{2}$)

Given the graph of $f(x)=x^{2}$, select the graph that represents $g(x)=x^{2}-4$.

2) (Main Screen Text)

Click the graph that represents the correct answer.
3) (Graphic or animation) (If we use an animation for this, fade in each graph individually, otherwise all four at once is fine.) (If you are using a graphing utility to make the graphs, the equations are as follows:
A. $y=x^{2}+4$
B. $y=x^{2}-4$
C. $y=(x-4)^{2}$
D. $y=(x+4)^{2}$
)

Click the graph below that represents the correct answer.
(No Text)

Click the graph below that represents the correct answer.
(No Audio)

4) Check Answer (button)

Answer Feedback

The correct answer is B. Since the

Check Answer (button)

Answer Feedback

The correct answer is B. Since the

Since the original graph has its vertex at the origin, subtracting four from every point on the graph brings the vertex to the point zero, negative four.

```
original graph has its vertex at the
origin, subtracting 4 from every point
on the graph brings the vertex to (0,-
4).
5) (Answer Feedback for Incorrect Answers)
[If user chooses A, C or D]
```

Remember, a positive quantity added to the function shifts the graph up and a positive quantity subtracted from the function shifts the graph down. Please try again.
6) (Incorrect Feedback \#2)

The correct answer is B. Since the original graph has its vertex at the origin, subtracting 4 from every point on the graph brings the vertex to ($0,-$ 4).
original graph has its vertex at the origin, subtracting 4 from every point on the graph brings the vertex to $(0,-$ 4).
[If user chooses A, C or D]
Remember, a positive quantity added to the function shifts the graph up and a positive quantity subtracted from the function shifts the graph down. Please try again.

The correct answer is B. Since the original graph has its vertex at the origin, subtracting 4 from every point on the graph brings the vertex to ($0,-$ 4).

[If user chooses A, C or D]

Remember, a positive quantity added to the function shifts the graph up and a positive quantity subtracted from the function shifts the graph down. Please try again.

The correct answer is B. Since the original graph has its vertex at the origin, subtracting four from every point on the graph brings the vertex to the point zero comma negative four.

Concept: Vertical Translations (or Shifts)
m02p01

Practice Exercises

ID = m02p01
Aufmann ia/ chap9/sect2/prob4 Aufmann ia/chap9/ sect2/prob7
Larson_ca/ chap2/ sect5/ prob5

Study the Concept (Storyboard)

Take Note Button
You can picture a reflection as if you were holding a mirror up to the line of reflection. The points you must plot are what you see in the mirror.

Reflections of a Graph

Reflections of the graph of $y=f(x)$ are represented as follows.

1. Reflection about the x-axis: $h(x)=-f(x)$
2. Reflection about the y-axis: $h(x)=f(-x)$

Graphing a Reflection

To reflect a graph about the x-axis:

1. Choose several key points on the graph (such as vertices of a geometric shape.)
2. The points that are on the graph of the reflection will have the same x-coordinate and the y coordinate will have the opposite sign as the original.

To reflect a graph about the y-axis:

1. Choose several key points on the graph.
2. The points that are on the graph of the reflection will have the same y-coordinate and the x coordinate will have the opposite sign as the original.

Take Note Button

The red figure is a reflection about the x-axis of the blue figure.
The green figure is a reflection about the y-axis of the blue figure.

```
Pedagogical Tags: For the concept, example and practice for
Reflections
Graphing Calculator: No
Applications: None
ISBNs 0-618-39184-3, 0-618-15686-0, 0-618-10337-6, 0-618-
38836-2, 0-618-38826-5, 0-618-38845-1
```


Concept: Reflections

Study the Concept (Programming and Text Script)
File Names This Module (Study the
Concept)
ID: m03c01 Animation: il0034m01c01anim.swf
Audio: il0034m03c01.mp3 Animation Frame 1: il0034m03c01animF1_IW.ai

Images, Text, Programming
Each numbered element is faded in unless otherwise noted

1) (Title) Graphing the Reflection of a

Given Graph
2) (Definition Box)

Reflections of a Graph

3) (Definition Box)

Reflections of the graph of $y=f(x)$ are represented as follows.
4) (Definition Box)

1. Reflection about the x-axis:
$h(x)=-f(x)$
5) (Definition Box)
2. Reflection in the y-axis:
$h(x)=f(-x)$

Narration (Text Transcript)

Project Note
(No Text)
(No Text)

Reflections of the graph of $y=f(x)$ are represented as follows.

The reflection of f of x about the x-axis is equal to the opposite of f of x.

The reflection of f of x about the y-axis is equal to f of negative x.
6) (Animation) [when the narration (No Text) mentions a reflection in the x axis, the purple figure should flash and when the narration talks about a reflection in the y axis, the green figure should flash...there are 2 lines for each then 1 line for each so users should get the idea)

7) (Procedure Box)

Graphing a Reflection

8) (Procedure Box)

[the red figure should flash until box 11]

To reflect a graph about the x-axis:

9) (Procedure Box)

1. Choose several key points on the graph (such as vertices of a geometric shape.)

10) (Procedure Box)

2. The points that are on the graph of the reflection will have the same x coordinate, and the y-coordinate will have the opposite sign as the original.

11) (Procedure Box)

[the green figure should flash until end of box13]
To reflect a graph about the y-axis:
12) (Procedure Box)

1. Choose several key points on the graph.
(No Text)

To reflect a graph about the x-axis

First, you must choose key points on the original graph, for example, the vertices of a square.

Then, the points that are on the graph of the reflection will have the same x coordinate, and the y-coordinate will have the opposite sign as the original.

To reflect a graph about the y-axis

First, you must choose key points on the original graph.

13) (Procedure Box)

2. The points that are on the graph of the reflection will have the same y coordinate, and the x-coordinate will have the opposite sign as the original.

Take Note Button

14) (Take Note Button appears when button is clicked)
You can picture a reflection as if you were holding a mirror up to the line of reflection. The points you must plot are what you see in the mirror.
15) (Main Screen Text) [the purple figure should flash]
The red figure is a reflection about the x-axis of the blue figure.
16) (Main Screen Text) [the green figure should flash] The green figure is a reflection about the y-axis of the blue figure.

Then, the points that are on the graph of the reflection will have the same y coordinate, and the x-coordinate will have the opposite sign as the original.
(No Text)

The red figure is a reflection about the x-axis of the blue figure.

The green figure is a reflection about the y-axis of the blue figure.

Concept: Reflections

Study the Concept (Programming and Audio Script)

Images, Text, Programming

1) (Title) Graphing the Reflection of a Given Graph
2) (Definition Box)

Reflections of a Graph

3) (Definition Box)

Reflections of the graph of $y=f(x)$ are represented as follows.
4) (Definition Box)

1. Reflection about the x-axis:
$h(x)=-f(x)$
5) (Definition Box)
2. Reflection in the y-axis:
$h(x)=f(-x)$
6) (Animation) [when the narration mentions a reflection in the x axis, the purple figure should flash and when the narration talks about a reflection in the y axis, the green figure should
(No Audio)
Reflections of the graph of y equals f of x are represented as follows.

The reflection of f of x about the x-axis is equal to the opposite of f of x.

The reflection of f of x about the y-axis is equal to f of negative x.
flash...there are 2 lines for each then 1 line for each so users should get the idea)

7) (Procedure Box)

Graphing a Reflection

8) (Procedure Box)

[the purple figure should flash until box 11]

To reflect a graph about the x-axis:

9) (Procedure Box)

1. Choose several key points on the graph (such as vertices of a geometric shape.)

10) (Procedure Box)

2. The points that are on the graph of the reflection will have the same x coordinate, and the y-coordinate will have the opposite sign as the original.

11) (Procedure Box)

[the green figure should flash until end of box13] To reflect a graph about the \boldsymbol{y}-axis:

12) (Procedure Box)

1. Choose several key points on the graph.

13) (Procedure Box)

2. The points that are on the graph of the reflection will have the same y coordinate, and the x-coordinate will
(No Audio)

To reflect a graph about the x -axis

First, you must choose key points on the original graph, for example, the vertices of a square.

Then, the points that are on the graph of the reflection will have the same x coordinate, and the y-coordinate will have the opposite sign as the original.

To reflect a graph about the y-axis

First, you must choose key points on the original graph.

Then, the points that are on the graph of the reflection will have the same y coordinate, and the x-coordinate will have the opposite sign as the original.

have the opposite sign as the original.

Take Note Button

14) (Take Note Button appears when button is clicked)
You can picture a reflection as if you were holding a mirror up to the line of reflection. The points you must plot are what you see in the mirror.
15) (Main Screen Text) [the purple figure should flash]
The red figure is a reflection about the x-axis of the blue figure.
16) (Main Screen Text) [the green figure should flash] The green figure is a reflection about the y-axis of the blue figure.
(No Audio)

The red figure is a reflection about the x-axis of the blue figure.

The green figure is a reflection about the y-axis of the blue figure.

Try an Example (Storyboard)

Using the graph of quadrilateral $A B C D$, select the graph that represents the reflection of the graph about the y axis.

Check Answer (button)

If user chooses B Feedback for incorrect answers.
The y values have
If A, C, or D is chosen:
remained the same, and
Remember that a the x values have become reflection about the y-axis the opposites of those in the original figure. the x-coordinates. Please try again.

Incorrect feedback \#2

The correct answer is B.
Notice that the y values have remained the same and the x values have become the opposites of those in the original figure.

Try an Example (Programming and Text Script)
File Names This Module (Study the

Concept)

ID: m03e01
Audio: il0034m03e01.mp3

Animation: il0034m03e01anim.swf
Animation Frame 1: il0034m03e01animF1_IW.ai
Static Frame 1: il0034m03e01static01.swf
Static Frame 2: il0034m03e01static02.swf Static Frame 3: il0034m03e01static03.swf Static Frame 4: il0034m03e01static04.swf

Narration (Text Transcript)

Proje

Using the graph of quadrilateral $A B C D$, select the graph that represents the reflection of the graph about the y-axis.
Using the graph of quadrilateral $A B C D$,
the y-axis.
Click the graph that represents the correct answer.
3) (Graphic)
(No Text)

4) (Answer feedback. Appears when button is pushed) Answer Feedback
The y values have remained the same, and the x values have become the opposites of those in the original figure.
5) (Answer feedback for incorrect answers)
[If A, C, or D is chosen:]
Sorry, you are not correct.
Remember that a reflection about the y-axis changes only the value of the x coordinates. Please try again.
6) (incorrect feedback \#2)

The correct answer is B. Notice that the y values have remained the same and the x values have become the opposites of those in the original figure.

The y values have remained the same, and the x values have become the opposites of those in the original figure.

Remember that a reflection about the y axis changes only the value of the x coordinates. Please try again.

The correct answer is B. Notice that the y values have remained the same and the x values have become the opposites of those in the original figure.

Try an Example (Programming and Audio Script)

Images, Text, Programming Each numbered element is faded in unless otherwise noted	Narration (Audio Transcript)	Project Note
1) (Graphic) (No Text) Noter		

2) (Main Screen Text)

Using the graph of quadrilateral $A B C D$, graph the reflection of the graph about the y-axis.

Click the graph that represents the correct answer.
3) (Graphic)

Using the graph of quadrilateral $A B C D$, select the graph that represents the reflection of the graph about the y-axis.
(No Text)

4) (Answer feedback. Appears when button is pushed) Answer Feedback
The y values have remained the same, and the x values have become the opposites of those in the original figure.
5) (Answer feedback for incorrect answers)
[If A, C, or D is chosen:]
Sorry, you are not correct.
Remember that a reflection about the y-axis changes only the value of the x coordinates. Please try again.
6) (incorrect feedback \#2)

The correct answer is B. Notice that the y values have remained the same and the x values have become the opposites of those in the original figure.

The y values have remained the same, and the x values have become the opposites of those in the original figure.

Remember that a reflection about the y-axis changes only the value of the x coordinates. Please try again.

The correct answer is B. Notice that the y values have remained the same, and the x values have become the opposites of those in the original figure.

Concept: Reflections
Practice Exercises
ID = m03p01
Larson_ca/ chap2/ sect5/ prob2
Larson_ca/ chap2/ sect5/ prob3

Tutorial: Transformations of Graphs and Functions

Video Clip Specification				
Filename: il0034m03v01.mov				
DVD/Book Title: Intermediate Algebra: Graphs and Functions				
Author: Larson				
Edition: 3				
Chapter \& Section: Lesson 2.6: Transformation of Functions				
Duration: 4:47				
Clip Information:	DVD Title	DVD Chapter	Time	Verbal Cue
In	4	6	0:15:26	(beginning of animation) "We can examine the transformation idea just by using function notation...."
Out	4	6	0:20:13	... so here's our graph. (end of section)

```
Pedagogical Tags: For the video
Graphing Calculator: No
Applications: none
ISBN's: 0-618-39184-3, 0-618-15686-0, 0-618-10337-6, 0-618-38836-2,
0-618-38826-5, 0-618-38845-1
```

Tutorial: Transformations of Graphs and Functions

ID= mas01

Reflections

il0032c01mas01.xml
Intermediate Algebra: Discovery and Visualization, 3/E [HMHI]
Hubbard/Robinson; 0-618-22381-9

1. 2.2.2.89
2. 9.8.1.310

Intermediate Algebra: Graphs \& Functions [HMIG]
Larson; 0-618-21883-1

1. 2.6.2.67
2. 2.6.2.68
3. 2.6.2.69
4. 8.4.1.28
5. 8.4.1.29
6. 8.4.2.32
7. 8.7.1.55

Vertical Translations (or Shifts)

il0032c02mas01.xml
Algebra: Introductory and Intermediate, 3/E [HMII or 4886]
Aufmann/Barker/Lockwood; 0-618-29398-1

1. 11.2.1.11
2. 11.2.1.12

Horizontal Translations (or Shifts)

il0032c03mas01.xml
Intermediate Algebra with Applications [HMIP] Aufmann; 0-618-30623-4

1. 8.6.1.51
2. 8.6.1.52
3. 9.1.1.1
4. 9.2.1.6
5. 9.2.1.7

[^0]: ALSO, IF PROGRAMMING ISN'T TOO DIFFICULT, A DRAG AND DROP INTERACTION COULD ALSO BE INCLUDED THAT WOULD ALLOW STUDENTS TO PICK UP THE PARABOLA AND PLACE IT ANYWHERE ON THE GRAPH AND HAVE THE EQATION SHOW THE SAME CHANGES BUT IT WOULD BE A FASTER MOVEMENT THAN WITH THE BUTTONS AND STUDENTS COULD SEE HOW THE MOVEMENT AFFECTS THE EQUATION.

